Pololu DRV8834 Microstepping Bipolar Stepper Driver 1.5A Uncooled (2 A max cooled) 2.5-10.8V with coin
Pololu DRV8834 Microstepping Bipolar Stepper Driver 1.5A Uncooled (2 A max cooled) 2.5-10.8V packagedPololu DRV8834 Microstepping Bipolar Stepper Driver 1.5A Uncooled (2 A max cooled) 2.5-10.8V backside in handPololu DRV8834 Microstepping Bipolar Stepper Driver 1.5A Uncooled (2 A max cooled) 2.5-10.8V main

Pololu DRV8834 Microstepping Bipolar Stepper Driver 1.5A Uncooled (2 A max cooled) 2.5-10.8V

$9.95

Though regular motor drivers can generally be used for full and half step applications true micro-stepping motor drivers like this one provide the highest level of precision and control for applications that demand it. These motor controllers are particularly well adapted for precision control and machining applications, but this particular driver is not suited for high voltage applications.

Quantity discounts available
1-910-99100+
$9.95$9.45$8.96

Out of stock

Product Description

Package Contents:

Pololu DRV8834 Microstepping Bipolar Stepper Driver 1.5A Uncooled (2 A max cooled) 2.5-10.8V

Features/Specifications:

Minimum operating voltage: 2.5 V
Maximum operating voltage: 10.8 V
Continuous current per phase: 1.5 A
Maximum current per phase: 2 A
Minimum logic voltage: 2.5 V
Maximum logic voltage: 5.5 V
Microstep resolutions: full, 1/2, 1/4, 1/8, 1/16, 1/32
Reverse voltage protection?: NO

(Usage information and diagrams provided by Pololu)

Usage diagram:

DRV8834 board usage

Power connections

The driver requires a motor supply voltage of 2.5-10.8 V to be connected across VMOT and GND. This supply should have appropriate decoupling capacitors close to the board, and it should be capable of delivering the expected stepper motor current.

Warning: This carrier board uses low-ESR ceramic capacitors, which makes it susceptible to destructive LC voltage spikes, especially when using power leads longer than a few inches. Under the right conditions, these spikes can exceed the 11.8 V maximum voltage rating for the DRV8834 and permanently damage the board, even when the motor supply voltage is as low as 9 V. One way to protect the driver from such spikes is to put a large (at least 47 µF) electrolytic capacitor across motor power (VMOT) and ground somewhere close to the board.

Motor connections

Four, six, and eight-wire stepper motors can be driven by the DRV8834 if they are properly connected; a FAQ answer explains the proper wirings in detail.

Warning: Connecting or disconnecting a stepper motor while the driver is powered can destroy the driver. (More generally, rewiring anything while it is powered is asking for trouble.)

Step (and microstep) size

Stepper motors typically have a step size specification (e.g. 1.8° or 200 steps per revolution), which applies to full steps. A microstepping driver such as the DRV8834 allows higher resolutions by allowing intermediate step locations, which are achieved by energizing the coils with intermediate current levels. For instance, driving a motor in quarter-step mode will give the 200-step-per-revolution motor 800 microsteps per revolution by using four different current levels.

The resolution (step size) selector inputs (M0 and M1) enable selection from the six step resolutions according to the table below. M0 is floating by default, while M1 has an internal 200 kΩ pull-down resistor, so leaving these two microstep selection pins disconnected results in 1/4-step mode. For the microstep modes to function correctly, the current limit must be set low enough (see below) so that current limiting gets engaged. Otherwise, the intermediate current levels will not be correctly maintained, and the motor will skip microsteps.

M0M1Microstep Resolution
LowLowFull step
HighLowHalf step
FloatingLow1/4 step
LowHigh1/8 step
HighHigh1/16 step
FloatingHigh1/32 step

Control inputs

Each pulse to the STEP input corresponds to one microstep of the stepper motor in the direction selected by the DIR pin. These inputs are both pulled low by default through internal 200 kΩ pull-down resistors. If you just want rotation in a single direction, you can leave DIR disconnected.

The chip has two different inputs for controlling its power states: SLEEP and ENBL. For details about these power states mode, see the datasheet. Please note that the driver pulls theSLEEP pin low through an internal 500 kΩ pull-down resistor, and it pulls the ENBL pin low through an internal 200 kΩ pull-down resistor. The default SLEEP state prevents the driver from operating; this pin must be high to enable the driver (it can be connected directly to a logic “high” voltage between 2.5 and 5.5 V, or it can be dynamically controlled by connecting it to a digital output of an MCU). The default state of the ENBL pin is to enable the driver, so this pin can be left disconnected.

 

The DRV8834 also features a FAULT output that drives low whenever the H-bridge FETs are disabled as the result of over-current protection or thermal shutdown, or while the undervoltage lockout is disabling the chip. The carrier board connects this pin to the SLEEP pin through a 10k resistor that acts as a FAULT pull-up whenever SLEEP is externally held high, so no external pull-up is necessary on theFAULT pin. Note that the carrier includes a 1.5k protection resistor in series with the FAULT pin that makes it is safe to connect this pin directly to a logic voltage supply, as might happen if you use this board in a system designed for the pin-compatible A4988 carrier. In such a system, the 10k resistor between SLEEP and FAULT would then act as a pull-up for SLEEP, making the DRV8834 carrier more of a direct replacement for the A4988 in such systems (the A4988 has an internal pull-up on its SLEEP pin). To keep faults from pulling down theSLEEP pin, any external pull-up resistor you add to the SLEEP pin input should not exceed 4.7k.

Optional pin jumpers

The CONFIG pin on the DRV8834 can be used to select between its default indexer mode, which is intended for controlling stepper motors, and an alternate phase/enable mode that can be used to drive two brushed DC motors. It is not made available by default (to avoid conflicts when using the DRV8834 carrier as a drop-in replacement for our other stepper motor driver carriers), but it can be connected to the pin labeled “(CFG)” by bridging the surface mount jumper indicated in the picture below. A second jumper can be bridged to make the current limit reference voltage available on the pin labeled “(REF)”.

 DRV8834 pin jumper diagram

 

Current limiting

To achieve high step rates, the motor supply is typically higher than would be permissible without active current limiting. For instance, a typical stepper motor might have a maximum current rating of 1 A with a 5 Ω coil resistance, which would indicate a maximum motor supply of 5 V. Using such a motor with 9 V would allow higher step rates, but the current must actively be limited to under 1 A to prevent damage to the motor.

The DRV8834 supports such active current limiting, and the trimmer potentiometer on the board can be used to set the current limit. You will typically want to set the driver’s current limit to be at or below the current rating of your stepper motor. One way to set the current limit is to put the driver into full-step mode and to measure the current running through a single motor coil without clocking the STEP input. The measured current will be 0.7 times the current limit (since both coils are always on and limited to approximately 70% of the current limit setting in full-step mode).

Another way to set the current limit is to measure the voltage on the “ref” pin and to calculate the resulting current limit (the current sense resistors are 0.100 Ω). The ref pin voltage is accessible on a via that is circled on the bottom silkscreen of the circuit board, or on the pin labeled “(REF)” if the appropriate surface mount jumper is connected (see above). The current limit relates to the reference voltage as follows:

Current Limit = VREF × 2

So, for example, if you have a stepper motor rated for 1 A, you can set the current limit to 1 A by setting the reference voltage to 0.5 V.

Note: The coil current can be very different from the power supply current, so you should not use the current measured at the power supply to set the current limit. The appropriate place to put your current meter is in series with one of your stepper motor coils.

Power dissipation considerations

The DRV8834 driver IC has a maximum continuous current rating of 1.5 A per coil, and in our tests, this carrier board was capable of supplying the rated current for many minutes without requiring additional cooling. The DRV8834 can support peak currents of up to 2.2 A per coil, but its overcurrent protection might kick in at currents as low as 2 A, and the actual current you can deliver depends on how well you can keep the IC cool. The carrier’s printed circuit board is designed to draw heat out of the IC, but to supply more than approximately 1.5 A per coil, a heat sink or other cooling method is required.

WARNING: This product can get hot enough to burn you long before the chip overheats. Take care when handling this product and other components connected to it.

Reviews

There are no reviews yet.

Be the first to review “Pololu DRV8834 Microstepping Bipolar Stepper Driver 1.5A Uncooled (2 A max cooled) 2.5-10.8V”

SKU: 615872422630 Categories: , Brands: .